EMCal Optical Sensors, Readout Electronics, DAQ and Trigger WBS 1.07/1.08

E.J. Mannel EMCal Internal Review 20-Aug-2015

EMCal Electronics Design Concept

- Minimize custom ASICs -> off the self components
- Same optical sensor for EMCal and HCal
- Similar readout for both EMCal and HCal
 - Continuous digitization of wave forms
 - Trigger primitives for Level-1 trigger
 - High DAQ rate, ~15KHz
- Minimize On-Detector power/heat load
- Use PHENIX DAQ
 - DCM-II
 - Event Builder
 - Data Logging
 - Monitoring
- Common biasing and low voltage systems

Optical Sensors Reference Design

- Silicon Photomultiplier, SiPM or MPPC
- High gain, ~10⁵
- Dynamic range set by number of microcells
- Immune to magnetic fields
- Relatively inexpensive, ~\$10 in large quantities
- Reference device: Hamamatsu S12572
 - 15 μm² pixel size
 - 40K microcells
 - ~25% Photon Detection Efficiency (PDE)
 - Spectral response: 320-900nm
- Potential concerns
 - Temperature dependence
 - Radiation effects

Temperature Dependence

 SiPM gain is set by the overvoltage applied to the device:

$$V_{op} = V_{br} + V_{ov}$$

- Temperature dependence:
 - ~10 %/°C
- Local thermistor to monitor temperature
- Positive feedback loop will be used to adjust the voltage to compensate for temperature fluctuations

Minamino, Akihiro at al.
"T2K experiment: Neutrino Detectors"

Radiation Effect

- Displacement damage due to neutrons- Increased leakage current
- Study the effects of neutron damage at:
 - LANSCE (LANL)
 - LENS (Indiana Univ.)
 - PHENIX IR
 - BNL Instrumentation

Dark Current vs Bias Voltage

- Measurements taken at LANSCE (Dec 2014)
 - 3 pixel sizes: 10μm, 15μm and
 25μm
- Measure dark current before and after irradiation
 - Integrated flux: 7.2 x 10¹⁰ n/cm² (E > 10MeV)
 - Corresponds to ~ 3 years sPHENIX running.
- Dark current increase @ V_{op}:
 - 10μm²: 70nA -> 95μA
 - 15μm²: 68 nA -> 240μA
 - 25μm²: 68 nA -> 750μA

Leakage Current and Signal Response

- Increasing leakage current
 - Broader pedestal
 - Reduced signal-to-noise
- STAR measurements: RUN15
 - FMS Upgraded to use SiPMs,
 25μm² pixel
 - Observed leakage current increase as a function of time
 - Look at MIP response as a function of time
 - No observable shift in MIP peak

STAR Measurements

PHENIX IR Measurements

- 6 SiPMs (25μm² devices)
- Devices located at 2 locations:
 - -90cm from IP at $\Theta = 90^{\circ}$
 - 180cm from IP at Θ = 15⁰
- Measure current at fixed voltage May/June 2015
- Use CERN RadFETs to measure 1MeV neutron equivalent fluence
- We expect few 10¹⁰ neutrons/cm² per run

Preamp Circuit

- Local thermistor for temp monitoring.
- Control voltage input for trimming bias +/- 2.5V.
- Charge injector for signal test.
- Differential multiple-feedback filter/driver with 30nS peaking time for 65MHz ADC sampling.
- P_D:
 - CBA ~ 80mW
 - Buffer/Amp ~ 50mW
 - Shaper/ Driver ~ 120mW
 - *P_{tot}* ~ 250mW

Front End Electronics Overview

sPHENIX DAQ Concept

- Waveform digitization
 - Located near detector
 - 65MHz digitization rate
 - 14 Bit ADC
 - Form local trigger primitives for Level-1 trigger
 - Identical for EMCal and HCal.
- Take advantage of PHENIX hardware
 - DCM-IIs: High speed readout, ~15KHz
 - PHENIX Event Builder
 - PHENIX Timing System (MTM/GTM/GL1)

DAQ Overview

Digitizer System

- Based on PHENIX HBD design
- 14 Bit ADC @ 65 MHz
- 64 channels per board
- Trigger Primitives based on 2x2 tower geometry
- First R&D prototypes are in fab with testing fall of 2015
- Should be available for 2016 beam test

8/20/15

sPHENIX Digitizer System

EMCal Trigger

Calibration and Monitoring

- Preamplifiers have built in charge injection.
 - System testing and monitoring
 - Electronics calibration
- LED Pulsar system system built into preamp boards
 - Pulsed through slow control system
 - Illumination of light guides
 - Experience in PHENIX: MPC, ZDC...
- Gain compensation by controlling SiPM overvoltage (Temperature stabilization circuit)
- Ultimate calibration offline using π⁰ peak PHENIX EMCal

8/20/15

LED signal observed in EMCal test beam prototype Using HBD readout electronics

Issues and Concerns

- The electronics (WBS 1.7) had internal review in March 2017 and recommendations are being addressed
- Reference sensor is the SiPM
 - Temperature dependence
 - Radiation effects
- R&D work is in progress to design and test a common base amplifier for the upcoming beam test.
 - Gain scale
 - Signal-to-Noise
- R&D work is in progress for the next generation digitizers
- Reference design for trigger system is being developed based on 2x2 tower sums.
- Calibration and monitoring systems being developed.
- System integration and assembly